

Fissile Mass Loading Limit in Defense Waste Processing Facility (DWPF) Glass Waste Canisters

Jeffrey Bentley Program Manager, Nuclear Materials Stabilization

Citizens Advisory Board May 16, 2023

CAB Recommendation 378 (January 2023)

- Integrated System Materials Processing
 - Identify criteria between Nuclear Materials and Liquid Waste to ensure successful completion of both organizational missions.
 - Provide a joint briefing to the CAB on identified criteria.
 - Provide the CAB periodic updates on criteria completion and impacts to mission performance.

- DOE response included acceptance of all three subparts
 - Today is the first joint briefing on criteria that impacts both organizational missions.

Fissile Mass Loading Limit

What is Fissile Material?

- This is material capable of sustaining a nuclear chain reaction.
- The sum of fissile isotopes includes U-233, U-235, Pu-239 and Pu-241.

Current Criteria:

 Current limit is 2,500 g/m3 of fissile material in a Glass Waste Canister.

Fissile Mass Loading Limit (continued)

- Liquid Waste Factors that are considered in determining fissile loading limit:
 - Glass durability limits
 - Glass criticality limits
 - DWPF processing criticality limits

Nuclear Materials

- Basin inventory and H-Canyon processing rate determines the maximum fissile that could be generated for disposition to a sludge batch
- Number of extra cans produced as a result of Accelerated Basin De-inventory (ABD)
- Amount of L-Basin inventory dispositioned to DWPF
 - Desire is to discard all L-Basin items to DWPF
 - Prevent standing up an alternative waste processing operation in H-Canyon if ABD mission extends past Tank Farm closure date

Fissile Mass Loading Limit (continued)

Anticipated Fissile Mass Loading		
Sludge Batch	Total Fissile (kg)	Fissile Conc. Glass (g/m3)
SB11	645	2,222
SB12	656	2,164
SB13	611	2,156
SB14	770	2,718
SB15	773	2,830
SB16	747	2,732
SB17	783	3,149
SB18	686	2,894
SB19	1015	3,555

Path Forward

- SRNL is developing a data package that includes:
 - Determination of a bounding number based upon the projected maximum fissile concentration in glass for any future DWPF sludge batch.
 - Update on glass chemistry of poured canisters and projections for future DWPF batches.
- This data package is used by Sandia National Lab to perform a closure analysis of a repository for the DOE-Office of Nuclear Energy.
 - Data will be used to update the models supporting a generic repository.
 - The analysis looks at potential interactions with other packages (i.e., spent fuel) in the repository.
- DOE-SR will submit a position paper and approval request to DOE-EM and DOE-NE that includes:
 - New proposed fissile limit for glass.
 - Concurrence from Sandia National Lab based on updated analysis.
- The updated repository limit is expected to be bounded by the processing limits in the SRS facilities.
 - Follow standard Sludge Batch Qualification process that operates within the facility safety basis
 and demonstrates an acceptable waste form (i.e., "good glass") per the waste acceptance criteria.

Current Status

- DOE-SR facilitated a kick-off meeting with the main organizations that will be integral through the approval process including:
 - DOE-Office of Environmental Management, DOE-Office of Nuclear Energy, Savannah River National Lab, Sandia National Lab, Savannah River Nuclear Solutions, and Savannah River Mission Completion.
- Previous analysis in the Liquid Waste System
 - For the Excess Plutonium Disposition project, fissile loading levels up to 5400 g/m³ have been conceptually evaluated (see System Plan 17 alternative analyses).
 - A 2008 Nuclear Criticality Safety Evaluation resulted in allowing for future waste streams that have fissionable material with a higher equivalent U-235 enrichment.
- There has been public support for higher loadings: SRS Citizens Advisory Board supported 2500 g/m³ (or higher) to accelerate the SRS mission
 - CAB adopted Recommendation 270 in May 2010:
 - DOE should increase the plutonium loading to 2500 g/m³ and pursue additional loading above 2500 g/m³ to the maximum extent safe and practicable.
 - DOE should include in any future DOE license application for any geological repository to accurately reflect the WAPS level of 2500 g/m³ or higher as may be justified.

Potential Stakeholder Concerns

Glass Waste Storage Building (GWSB):

- The ABD program does not create the need to construct an additional GWSB.
- Canisters containing ABD material do not impact GWSB storage requirements.

Nuclear Safety

 Every Liquid Waste facility affected by increased limit will be analyzed for criticality concerns and potential hazards.

Comments/Questions

